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Definition of Optical Buffers

= Both input and output are optical data stream.
= Application will determine device requirements

T controllable within a certain range by an external source
Turn on and turn off time: a few bits may be tolerable
Size and room temperature operation

Storage (how long it can store) and capacity (how many bits it can
store) should be independent parameters.
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Fixed Optical Buffer with Fiber or WG

Loop
To Store

1. Set switch to “X position” and let datam

enter the loop
2 x 2 Optical

i ’t switch
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Fiber or 0

Semiconductor
Waveguide (WG) Loop

2. After the data completely enter the
loop, set switch to “Il position” and
allow data to recirculate in the loop.

2 x 2 Optical switch

~

a4 To Release

1. Set switch to “X position” and let data to

leave the loop
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Attributes Fiber Semi. WG

Storage (how NTloop 1ns —1s 1lps —1s

long)

Capacity Tioop Ins—10pus | 1lps—1ns

(how much)

Response Tioop Ins—10pus | 1ps—1ns

Size 0.2m-2 0.01-10
km cm

Integration NA Yes
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Variable and Compact Optical Buffer with

Slow-Light Device

Single Pass Configuration
Vary the slow down factor in slow light device
using an external source to vary storage.
Capacity is limited by the storage time.

/~ Loop Configuration
Significantly lengthen the storage without
compromising response time. Decouple
storage and capacity.

2 x 2 Optical switch

W)
V Pl
\_ Slow’ Light Device -\ v
Attributes QD-EIT | Dispersive Attributes QD-EIT | Dispersive WG
WG Storage N7(V) 10ns—-1s | 10 ns—1s
Storage (how | Variable 10ns— | 10 ns c . Variabl 10 1 10
apaci ariable ns — ns
long) r(v) Lhs R r(v) |ps
Capacity Variable 10ns— | 10ns Response <0.3ps | instantaneous
(how much) <7 (V) 1 us :
Size lcm 1cm
Response <0.3 ps | Instantan- :
eoUS Integration Yes Yes
Size lcm 1cm
Integration Yes Yes
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Electromagnetically Induced
i Transparency (EIT)

Coherent Interference of Electronic States and Optical Beams
Transparency region
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Slow Light Using EIT

State Reference Material System Temp Results
Hau, et.al. 1999; | Sodium Atoms (A- Slow down to 17 m/s; Store
Gas Liu et. al. 2001 type) 0.9 uK light pulse for 100 usec.
Rubidium Atoms (A-
Gas Phillips et. al. 2001 type) 343-363 K Halt light for 200 usec
Pr-doped Y,SiOs (A-
Solid Ham et. al. 1997 type) 5.5K EIT observation in solids
Turukhin et. al. | Pr-doped Y,SiOs (A-
Solid 2002 type) 5K Slow down to 45 m/s
InGaAs/In AlAs
Serapiglia et. al. | QWs; intersubband Observation of reduction of
Semiconductor 2000 (ladder) 30K absorption as signature of EIT
Phillips and Wang, GaAs QWs; Observation of reduction of
Semiconductor 2003 interband (V-type) 10 K absorption as signature of EIT
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Slow Light Qua

ntum Dot Waveguide w.

Electromagnetically Induced Transparency

Ladder Energy Configuration

» Coherence interference between the pump laser
and electronic states results in drastic change of

—QD potential material dispersion, known as EIT which leads to
|3>=C2 a very large slow down fa 102-10%.
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Dispersion Curves for QDs with Room
Temperature Linewidths
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Slow Light Device Using Waveguide
Dispersion

= Waveguide propagation constant k varies with frequency w - Waveguide dispersion
= Challenges: obtaining a reasonable bandwidth and minimized dispersion
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Example 1. Sampled Gratings

= Uniform grating regions separated by spacers
= Previous demonstration of slow down factor ~3
= Simulations show it can be increased to 100-300

Example 2: Moiré Gratings

= Two overlayed gratings with slightly different periods
= Large (x1000) group velocity reduction is predicted
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= Narrow transmission band opens within the overlap
of grating stop bands

= Flat dispersion curve - reduced group velocity
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Slow Light

s Cascadable slow-down factor
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Ku et. al. “Semiconductor All-Optical Buffers Using Quantum Dots in Resonator Structures “OFC 2003
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i Signal Propagation

= 100 ps pulses

n n””s = Length=1cm
> Fﬂ | = 8.7 ns storage
g J ote = Minimum
T | J L - distortion and
-

J @ LJ/ dispersion

Vo1=V41= 2 meV
T= 300K
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Summary

= Proposed and analyzed the first semiconductor all-optical
buffer based on EIT effect in QDs.

= Establish the conditions and formulation necessary to achieve
a large slow-down factor.

= The effect of QD size nonuniformity is also calculated. Our
calculations show that a slow down factor of 50-100 can be
obtained with state-of-the-art QDs at room temperature.

= SIS expected to increase with
= More uniform QDs
= Narrower homogeneous linewidth
= Different energy configuration
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